Remarks on the supposed solid impacts at the T/J boundary in the Corfino Section (Northern Apennines, Italy)

Milvio FAZZUOLI and Letizia ORTI

Dipartimento di Scienze della Terra, via La Pira 4, 50121 Firenze, Italy; e-mail: milvio@dicea.unifi.it

Key-words: latest Triassic, Rhaetian, Impact Event, foraminifers, Northern Apennines.

ABSTRACT: In 1991, American scientists found “shocked” quartz grains, indicating extraterrestrial bolide impacts, near Corfino (Northern Tuscany) in shaly beds at the boundary between the Rhaetian Calcarea Rhaetavicula and the inferred Lower Jurassic (Hettangian) Calcare Massiccio. According to our observations of the same section, the top interval of the Calcarea Rhaetavicula consists of beds of oolitic grainstone, interlayered with thin levels of marls where the shocked quartz grains were found. In the overlying Calcare Massiccio the rock consists mostly of dolomitised and recrystallised mudstone up to about 30 m, where abundant Rhaetian benthic foraminifers occur. The occurrence of shocked quartz in the upper part of the Calcarea Rhaetavicula suggests that one or more impact events took place at this time; however, Triassic fossils occur well above the shocked quartz levels and any impact events therefore occurred within the Rhaetian.

INTRODUCTION

The Triassic/Jurassic boundary

The Triassic/Jurassic (T/J) boundary represents a time of major global environmental changes and is associated with one of the five largest mass extinctions of the Phanerozoic, with the loss of about 76% of species (Raup 1992). It is now recognized that this decline took place in several stages through the Late Triassic, culminating in the boundary extinction (e.g. Hallam 2002). Mechanisms proposed as causes for the extinction include gradualistic and catastrophic processes (Tanner et al. 2004), sea level change (resulting in habitat reduction from regression or anoxia from transgression), climate change, bolide impact leading to an increase in atmospheric opacity, atmospheric effects from large scale volcanism, and catastrophic greenhouse warming caused by sudden release of methane hydrates from the sea floor.

The impact hypothesis

With regard to a bolide impact, diagnostic evidence in the stratigraphic record includes high-pressure mineral polymorphs (stishovite, coesite), planar deformation features (PDFs) in quartz and feldspar, impact glass (tektites, microtektites), microspherules, Ni-rich spinels, anomalies in iridium and other platinum group elements (PGEs).
Recognition of impacts in the stratigraphic record commonly focuses on the identification of PDFs in quartz (the so-called "shocked quartz"), because they are identifiable with a standard petrographic microscope, although confirmation by SEM or TEM is necessary.

Shocked quartz has been found in the Kendelbach section, Austria (Badjukov et al. 1987) and in Italy, in the Corfino section, Northern Apennines (Bice et al. 1992). However, these reports, based on petrographic techniques alone, are now considered insufficient for clear identification of shock metamorphism (Grieve, Pesonen 1996).

THE II FIUME GORGE SECTION (NORTHERN APENNINES)

Previous work

Bice et al. (1992) reported shocked metamorphosed quartz grains from three closely spaced shaly beds from the uppermost Triassic ("Rhaetian") Calcare a Rhaetaviculara (Fig. 1A) in the "section in the II Fiume Gorge, near the village of Corfino of Northern Tuscany", and suggested "that multiple impacts occurred in the latest Triassic, one of which coincided with a locally, and perhaps globally significant extinction at the T/J boundary". The paper lacks a map or other information useful for identifying the exact position of the section studied.

Geological setting

On both sides of the II Fiume river, in the Pania di Corfino area (Fig. 1B), the Upper Triassic-Lower Jurassic succession, comprises, in ascending order, the Formazione della Pania di Corfino: thick-bedded carbonates, 340 m thick; the Formazione della Spezia (= Calcare a Rhaetaviculara Auct.): carbonates, marls and shales in beds of variable thickness, 20 m thick (Fazzuoli and Turi 1981; Fazzuoli et al. 1988) and the Calcare Massiccio: massive carbonates, 210 m thick (Fazzuoli 1974).

The Calcare Massiccio forms a prominent almost vertical cliff on both sides of the II Fiume Gorge, but, as the structure of the Pania di Corfino...
Remarks on the supposed bolide impacts at the T/J boundary in the Corfino Section (Northern Apennines, Italy)

STRATIGRAPHIC UNIT

<table>
<thead>
<tr>
<th>Environment</th>
<th>Lithology</th>
<th>Samples 2005</th>
<th>Samples 1990</th>
<th>Fossils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intertidal sandflat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtidal muddy lagoon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid/inner ramp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:

- Packstone / Grainstone
- Mudstone / Wackestone
- Dolomitic marly limestone
- Shattered quartz
- Sample

Fig. 3. Stratigraphic sections from the II Fiume Gorge with the positions of samples taken by Barellini in 1990 (Barellini 1991) and in 2005 (present study).

The upper part of the *Formazione della Spezia* (Calcare a Rhaetavicula Auctt.) consists of an alternation of carbonate (mostly limestone and dolomitic limestone) beds and thinner marly levels. The lower part of the section studied comprises, in ascending order:

- a) 1 m of dark grey bioclastic wackestone beds alternating with bioclastic packstone beds (storm layers), both 5 to 30 cm thick, and with marly shales, 2 to 5 cm thick. The bioclasts in
the wackestone are radiolarians, benthic foraminifers (Aulotortus communis Kristan) and ostracods; those in the packstone are mainly pelecypods. Silt-sized quartz grains and Fe-oxide are rather abundant. The minerals in the marly levels are illite-muscovite, chlorite, calcite, ankerite and quartz.

The depositional environment was a transition from mid to inner ramp (sensu Burchette and Wright 1992).

b) 1.85 m of 8 to 30 cm-thick beds of dark grey bioclastic packstone/floatstone passing upwards into oolitic grainstone, interlayered with three cm-thick levels of marl; another 30 cm-thick marly level (sample RS 15) forms the top of this unit. The bioclasts in the packstones/floatstones are mainly pelecypods and minor benthic foraminifers; those in the grainstones are benthic foraminifers, present both as the nuclei of the ooids and as loose grains. The fauna is very rich and consists of: Agathammina sp., Agathammina inconstans (Kristan-Tolmann and Tolmann), Aulotortus communis (Kristan), A. tenuis (Kristan), A. tumidus (Kristan-Tolmann), Gandinella sp., Gandinella falsofriedli (Salaj, Borza and Samuel), Glomospirella sp. and G. parallela (Kristan-Tolmann). The minerals in the marly levels are illite-muscovite, chlorite, calcite, ankerite and quartz. According to Bice et al. (1992), the shocked quartz grains were mainly found in these marly levels (cf. Fig. 1A).

The depositional environment was a inner ramp.

c) The uppermost marly level is overlain by the Calcare Massiccio (massive limestone). In this the lower 110 cm is slightly bedded (Fig. 3) and consists of mudstone with silt-sized quartz grains; a bioclastic wackestone/packstone level with Aulotortus communis (sample SRT1B; Fig. 4D) is present in the middle part. Upwards the rock is massive, probably through pervasive bioturbation, and also consists of mudstone, more or less dolomitized, with rare and recrystallized bioclasts (benthic foraminifers: Aulotortus communis, Agathammina inconstans). The depositional environment was a subtidal muddy lagoon within a carbonate platform. Between 12 and 14 m above the base, the limestone is rather bedded, slightly dolomitic and marly. About 30 m above the base of the Calcare Massiccio is a unit of fenestral bioclastic, cortoidal and intraclastic grainstone/packstone (Sample SRT 9, Fig. 4E); this is possibly an intertidal sand flat deposit. In this level abundant Rhaetian benthic foraminifers (e.g. Agathammina sp., Auloceras permodicosoids (Oberhauser), A. sinuosus (Weynschenk), Gandinella ape­nninica (Ciarapica and Zaninetti), G. falsofriedli and Glomospirella sp.) occur together with Thaumatoporella parvovesiculifera (Raineri) (Fig. 3).

On a regional scale, fossil assemblages with Triasina hantkeni Majzon, Griphoporella curvata Guembel, Gandinella falsofriedli, etc., have also been found within the Calcare Massiccio at Avane (Fazzaoui et al. 1988) and in the Lima Valley (Val di Lima) (Mannori 1991) (Fig. 5).
Remarks on the supposed bolide impacts at the TCJ boundary in the Corfino Section (Northern Apennines, Italy)

Pania di Corfino (Paulie, Turin)/T J_journey (Barellini, 1991)

Fig. 5. Sections of the upper part of the Formazione della Spezia (or the Formazione della Pania di Corfino) and the lower part of the Calcare Massiccio in the Il Fiume Gorge region, Val di Lima and Avane (see Fig. 1B).

CONCLUSIONS

All the cited fossils reported from the lower part of the Calcare Massiccio in the Il Fiume Gorge, Avane and Val di Lima sections, indicate a Rhaetian age (Ciarapica and Zaninetti 1984; Mancinelli et al. 2005).

In the upper part of the Formazione della Spezia the sea level fell and the depositional environment evolved from a mid ramp to a high energy inner ramp and subsequently, in the Calcare Massiccio, to a subtidal and then intertidal lagoon within a carbonate platform: the environmental change at the boundary between the Formazione della Spezia and the Calcare Massiccio is therefore related to a regressive trend. During this lowstand, as indicated by the shocked quartz, one or more impact events took place. Rhaetian fossils occur well above the levels with shocked quartz levels, and any impact event occurred therefore within the Rhaetian, not at the Triassic/Jurassic boundary. The lithostratigraphic boundary between the Formazione della Spezia and the Calcare Massiccio does not correspond with the biostratigraphic boundary marked by the disappearance of Rhaetian fossil associations.

Acknowledgements

We thank Gloria Ciarapica and Gert Bloos for the important and constructive suggestions and the anonymous referee that patiently improved the text and the English language. This study was financed by the University of Firenze (Grants ex 60% to M. Fazzuoli), Via G. La Pira 4, 50121 Firenze, Italy.

REFERENCES

Ciarapica G. and Zaninetti L. 1984. Foraminifères et biostratigraphie dans le Trias supérieur de la série de La Spezia (Dolomies de Coregna et

