Palaeofloras from the Kota Formation, India: palaeodiversity and ecological implications

Chopparapu CHINNAPPA¹, Annamraju RAJANIKANTH¹, Kavali PAULINE SABINA¹

Key words: Agathoxylon, floral diversity, palaeoecology, Kota Formation, India.

Abstract. The Kota Formation of the Pranhita-Godavari Basin is well known for its fossil fauna and flora especially for its silicified woods. However, the palaeoflora and its palaeoclimatic significance within the formation are poorly known. In spite of the fact that the formation yields a rich fauna and flora chronostratigraphic problems still exist. The present study aims to analyze the palaeofloras from the Kota Formation to understand their diversity and palaeoecological significance. We also describe a new species *Agathoxylon kotaense* belonging to the conifer family Araucariaceae. Our study shows that the flora was dominated by conifers and that it is comparable to that of the ?Late Jurassic – Lower Cretaceous Gangapur Formation, Pranhita-Godavari Basin and that of the Rajmahal Formation of the Rajmahal hills. The growth ring pattern and leaf fossil assemblage suggest that the growth conditions were seasonal, but mostly stressed.

INTRODUCTION

Plant fossil assemblages are widespread, abundant and often diverse in the Mesozoic sequences of India, where they remain a valuable tool for understanding the diversity, and evolution of the Mesozoic ecosystems (Bose et al., 1990; Chinnappa et al., 2014, 2015; Chinnappa, Rajanikanth, 2016, 2017, 2018). A number of Mesozoic floras from Triassic and Cretaceous sequences have been described in India (Rajanikanth, Chinnappa, 2016 and reference therein). However, only limited palaeobotanical studies have been conducted on the Jurassic sequences in India (Mahabale, 1967; Biradar, Mahabale, 1978; Prabhakar, 1989; Sukh-Dev, Rajanikanth, 1988; Rajanikanth, Sukh Dev, 1989; Muralidhara Rao, 1991; Vijaya, Prasad, 2001; Bonde, 2010; Chinnappa, Rajanikanth, 2016; Rai et al., 2016). These studies were restricted to the description and listing of plant fossil assemblages. Consequently, little is known regarding the diversity and palaeoecology of the Jurassic floras of India. One of the main reasons for the lack of knowledge regarding the Jurassic floras of India is the lack of proper age control.

In India, the Jurassic sediments are distributed in the Kota Formation of Pranhita-Krishna-Godavari Basin, the Hartala Formation of South Rewa Basin, the Lathi Formation of Jaisalmer Basin, the Jhuran Formation of Kutch Basin and the Dubrajpur Formation of Rajmahal Basin (Fig. 1A, B). Among these formations, the Kota Formation has received great attention from various authors because of its rich palaeoflora (Mahabale, 1967; Biradar, Mahabale, 1978; Sukh-Dev, Rajanikanth, 1988; Prabhakar, 1989; Rajanikanth, Sukh Dev, 1989; Muralidhara Rao, 1991; Vijaya, Prasad, 2001; Chinnappa, Rajanikanth, 2016) and palaeofauna (Owen, 1952; Rao, Shah, 1959; Jain, 1973, 1974a, b, 1983; Tasch et al., 1973; Govindan, 1975; Jain et al., 1975; Yadagiri, Prasad, 1977; Misra, Satsangi, 1979; Yadagiri et al., 1979; Datta, 1981; Yadagiri, 1984, 1985, 1986; Yadagiri, Rao, 1987; Prasad, Manhas, 1997, 2001; 2002, 2007; Evans

¹ Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226 007; chinnabsip@gmail.com, annamraju.rajanikanth@gmail.com, paulinesabina@gmail.com.

B. Location map of Kota-Chittur area showing the fossil site

et al., 2002; Parmar *et al.*, 2013). The formation is named after the village of Kota, occurring on the eastern side of the Pranhita riverbank in the Chandrapur District, Maharashtra. In this study we report some leaf and wood fossils from the Kota Formation and we discuss the diversity and palaeoecology of the Kota flora. We have described the wood using a quantitative approach to fossil wood taxonomy. A quantitative approach is valuable because it allows the wood morphology to be described in a more precise way than by a qualitative description alone, and in addition it also enables the distinguishing of the the intra-sample and intra-taxon variability to be ascertained more exactly (Falcon-Lang, Cantrill, 2000, 2001).

GEOLOGICAL BACKGROUND AND AGE OF THE KOTA FORMATION

The geologic and stratigraphic information regarding the Kota Formation is available through the studies of Kutty (1969), King (1881), Rudra (1982), Bhandhyopadhyay and Rudra (1985), Raivarman *et al.* (1985), Kutty *et al.* (1987), Lakshminarayana (1994, 2002) and Sen Gupta (2003). The Kota Formation is divided into three members – the Lower, Middle and the Upper members, defined by Lakshminarayana (1994). The Lower Member is represented by sandstone,

with pebbles of banded chert. The Middle member is composed of limestone. The Upper Member is characterized by the sandstone, siltstone and claystone (Tab. 1). The leafy fossils were collected from the claystones of the Upper Member while the woods were collected from the siltstones and fine grained sandstones of this member. The Kota Formation occurs between the Late Triassic Dharmaram Formation which is composed of coarse sandstone and red clays, and the Lower Cretaceous Gangapur/Chikiala Formation which is composed of coarse ferruginous sandstone, greywhite-pinkish mudstone and silty mudstone/shale. There is an unconformity between the Kota and Gangapur/Chikiala formations. The stratigraphic succession of the Pranhita-Godavari Basin is given in Table 1.

The precise age of the Kota Formation has been subject to numerous scientific debates. (Jain, 1973, 1983; Govindan, 1975; Kutty *et al.*, 1987; Rajanikanth *et al.*, 2000; Vijaya, Prasad, 2001; Prasad, Manhas, 2007). This is primarily because the sediments from the Kota Formation have not yielded any biostratigraphically significant index fossils (Parmer *et al.*, 2013). As no datable magmatic rocks occur in relation to the Kota Formation, radiometric data are also not available. Early Jurassic to Early Cretaceous ages have been suggested for the Kota Formation based on individual faunal and floral evidences. It was assigned a Jurassic age by King (1881) and more specifically, a Liassic (Early Jurassic) age by Krishnan (1968).

3

Lithostratigraphic succession in the Pranhita-Godavari Basin (data after Kutty et al., 1987; Lakshminarayana G., 1994, Sen Gupta 2003)

	Formation	Lithology	Age						
Deccan Traps									
	Gangapur/Chikiala	Coarse ferruginous sandstone, greywhite-pinkish mudstone and silty mudstone/shale	Early Cretaceous						
	unconformity								
Upper Gondwana	Kota	<u>Upper</u> : Sandstone, siltstone and claystone <u>Middle</u> : Limestone <u>Lower</u> : Sandstone with pebbles of banded chert	?Late Jurassic – Early Cretaceous						
	Dharmaram	Coarse sandstone and red clays	Late Late Triassic						
	Maleri	Red clays, fine-medium sandstone and limestone	Early Late Triassic						
	Bhimaram	Ferruginous/calcareous sandstone, minor red clays	Late Middle Triassic						
	Yerrapalli	Red and violet clays with sandstone and limestone	Early Middle Triassic						
	Kamthi	<u>Upper</u> : Coarse grained, ferruginous sandstone with quartz pebbles <u>Middle</u> : Siltstone <u>Lower</u> : Purple colored argillaceous sandstone interbedded with sandstone	Late Late Permian – ?Early Triassic						
Lower	unconformity								
Gondwana	Kundaram/Barren Measure ("Ironstone shale"/ "Infra Kamthi")	White-light yellow feldspathic sandstone, ferruginous shale, ironstone and clay/ coal bands	Late Early Permian – Late Permian						
	Barakar	Barakar Upper: Feldspathic sandstone, shale and carbonaceous shale Lower: Feldspathic sandstone, siltstone and coal laminae							
	Talchir	Diamictite, rhythmite, tillite, greenish shale and sandstone	Early Early Permian						
unconformity									
Proterozoic		Igneous and metamorphic rocks	Precambrian						

Jain (1973, 1974b, 1983) suggested an Early Jurassic age based on semionotid fish taxa such as *Tetragonolepis olhdami* and *Paradapedium egertoni*, and the reptiles: *Campylognathoides indicus* and *Lepidotes deccanensis* (Tab. 2). Subsequently, Yadagiri, Prasad (1977) also favored an Early Jurassic age based on the pholidophorid fishes – *Pholodophorus indicus* and *P. kingi*. Feist *et al.* (1991) reported a charophyte taxon *Aclistochara* comparable to *A. jonesi* and *A. bransoni* known from the Late Jurassic and Early Cretaceous formations of USA and China (Peck, 1957; Liu, 1982). Despite this, Feist *et al.* (1991) followed the long established Early Jurassic age. Later, Bhattacharya *et al.* (1994) also reported an Early Jurassic age.

Govindan (1975) suggested a Middle Jurassic age, based on the ostracod assemblage comprising *Darwinula* cf. *D. sarytirmensis*, as this species was originally known from the Middle Jurassic Mangyshlak Peninsula in Kazakhstan and Timiriasevia in Russia. Later, Misra, Satsangi (1979) also reported an ostracod assemblage comprising *Darwinula* cf. *D. sarytirmensis* and other taxa and they accepted the Middle Jurassic age as suggested by Govindan (1975). Nonetheless, the stratigraphic range of *Darwinula sarytirmensis* extends from Early to Late Jurassic (Hao *et al.*, 1983; Meizhen, 1984; Kietzke, Lucas, 1995).

The fossil mammals from the Kota Formation are represented by the triconodont *Dyskritodon* and *Paikasigudodon*, and morgaucodontid *Indotherium* (Datta, 1981; Yadagiri, 1984, 1985; Prasad, Manhas, 1997, 2002). *Dyskritodon* is a significant stratigraphic index fossil known from the Early Cretaceous of Morocco (Sigogneua-Russel, 1995). More recently, Prasad and Manhas (2007) reported a docodont mammalian genus *Gondtherium* and suggested morphological similarities with the Late Jurassic *Haldanodan* of Portugal (Krusat, 1980). A Late Jurassic to Early Cretaceous age (Oxfordian to Barremian) for the Kota Formation also gained support from a palynological study by Vijaya and Prasad (2001). In this study we followed the age assignments of Vijaya and Prasad (2001) and Prasad and Manhas (2007).

Showing the suggested age for the Kota Formation by various authors based on flora and fauna record

Table 2

Author	Year	Studied fossil taxa	Suggested age
Bhattacharya et al.	1994	Praechara symmetrica	EJ
Datta	1981	Kotatherium haldanei	Jurassic
Datta & Das	2001	Indozostrodon simpsoni	EJ
Datta et al.	2000	Indochelys spatulata	Jurassic
Egerton	1851	Lepidotes deccanensis, Tetragonolepis oldhami	Jurassic
Evans et al.	2002	Bharatagama rebbanensis	EJ-MJ
Evans et al.	2001	Godavarisaurus lateefi, Rebbanasaurus jaini	EJ-MJ
Feist et al.	1991	Aclistochara jonesi, A. bransoni	EJ
Govindan	1975	Darwinula cf. sarytirmensis, ?Limnocythere sp., Timiriasevia digitalis	MJ
Jain	1973	Paradapedium egertoni	EJ
Jain	1974	Campylognathoides indicus, Indocoelacanthus robustus	EJ
Jain <i>et al</i> .	1975	Barapasaurus tagoreii	EJ
Misra & Satsangi	1979	Clinocypris sp., Cypredea sp., Darwinula kingi, Darwinula sp. 1 & 2, Eucandona sp., ?Stenocypris sp.	MJ
Owen	1852	?Teleosaurid crocodiles	EJ
Parmar et al.	2013	Indobaatar zofiae	EJ-MJ
Prasad & Manhas	2007	Docodontidae dattai, Gondtherium	LJ-EC
Prasad & Manhas	2002	Dyskritodon indicus, Paikasigudodon yadagiri	EJ-MJ
Prasad et al.	2004	Lissodus indicus, ?Polyacrodus sp.	MJ-LJ
Rao & Shah	1963	Rhamphorhynchus sp.	EJ
Vijaya & Prasad	2001	Pollen assemblage	LJ-EC
Yadagiri	1984	Indotherium pranhitai, Trishulotherium kotaensis	EJ
Yadagiri	1985	Nakunodon paikasiensis	EJ
Yadagiri	1986	Paikasisaurus indicus, Lissodus indicus	EJ
Yadagiri & Prasad	1977	Pholidophorus kingii, P. indicus	EJ
Yadagiri <i>et al</i>	1979	Kotasaurus vamananalliensis	EI
rudugiii ei ui.	1)//	nousun us yumanapamensis	1.5

MATERIALS AND METHODS

The fossil wood material studied here was collected from around the Kota and Chitur villages, Sironcha Taluk in Gadchiroli District of Maharastra State, India (Fig. 1A, B). The wood material prepared for this study was preserved as silicified surface material in a *nala* (Indian: small canal) section near Kota village. The leaves were preserved as fragmentary leafy impressions in a thin layer of mudstone in between two limestone layers of the Upper Member of the Kota Formation. No cuticles were recovered.

The preparation of the wood specimens was undertaken using conventional rock thin sections cut to varying thicknesses related to the unique preservation of each specimen. The sections were prepared in transverse (TS), radial longitudinal (RLS) and tangential longitudinal (TLS) planes. The sections were examined under an Olympus BH2 microscope with attached camera. The terminology used here mainly follows that of the the IAWA Committee (2004) and identification of the fossil taxa is mainly based on the key to identifying coniferous morpho genera by Philippe and Bamford (2008). The measurements were determined after measuring at least two dozen cells in each case as followed by most recent xylotomists (Falcon-Lang, Cantrill, 2000; Oh *et al.*, 2011; Chinnappa, Rajanikanth, 2016). The measurements represent minimum and maximum values with mean values in brackets. The slides (BSIP 16274a, 16274b, 16274c) are deposited at the repository of the Birbal Sahni Institute of Palaeosciences, Lucknow, India. The data for leaf fossils and spore-and pollen is obtained from the studies of Prabhakar (1989), Rajanikanth and Sukh-Dev (1989) and Vijaya and Prasad (2001).

The spore/pollen is assigned to family level following Ramanujam and Rajeshwar Rao (1979), and the pteridophytic fronds were assigned to family level after Harris (1961) and Barbacka and Bodor (2008). However, the taxonomic affinities at family level are not certain for many gymnosperm taxa; many of these taxa could be related to more than one family. Macro-and microfloral species diversity was analysed separately by considering the total number of taxa known in the flora. The taxonomic diversity of the flora is illustrated in pie diagrams as a simple percentage representation of each group (at taxon level), generated by using MS Excel. Similarly, the abundance of the various plant taxa was calculated by counting the number of samples of the given taxa.

RESULTS AND DISCUSSION

SYSTEMATIC PALAEOBOTANY

Family Araucariaceae Henkel & Hochstetter, 1865

Genus Agathoxylon Hartig sensu Rössler et al., 2004

Agathoxylon kotaense n. sp. Pl. 1: 1–8.

Derivation of name. After the Kota Formation from where the specimens were collected.

Holotype. BSIP 16274.

Referred specimens. BSIP 16274a, 16274b, 16274c.

Location. Near village Kota, Sironcha Taluka in Gadchiroli District of Maharastra State, India.

Horizon and age. Kota Formation, ?Late Jurassic – Early Cretaceous.

Repository. Birbal Sahni Institute of Palaeosciences, Lucknow, India.

Description. In RLS, radial walls tracheid pitting is araucarian pitting on radial wall of tracheids *i.e.* with more than 90% of the pits contiguous, mostly deformed at contact; predominantly uniseriate, a few biseriate pits are also present ("IAWA 44"). Where pits are biseriate they are generally alternate ("IAWA 47") to sub-oppositely arranged (Pl. 1: 5). Sanio rims absent. The radial wall tracheid pits are ranging in size approximately from $12-(16\pm1.76)-22 \ \mu m$ (vertical) by from $15-(17\pm1.76)-22 \ \mu m$ (horizontal). The shape of the tracheid pits is mostly circular. The crossfield pits are typically araucarioid ("IAWA 95"), 12-16 for each crossfield ("IAWA 100"; Pl. 1: 6–8). The crossfield pits are approximately 1.6 $\ \mu m$ by 2.2 $\ \mu m$. Rays are abundant throughout.

In TLS rays are uniseriate and rarely biseriate ("IAWA 107"), 2– (4–8) –20 cells high ("IAWA 103"; Pl. 1: 3). The rays are barrel shaped and variable in size. The ray cells are ranging in size approximately from 27– (40) –53 μ m (vertical) by 21– (32) –41 μ m (horizontal). Tangential wall pits absent. Axial parenchyma is absent. No resin canals were observed.

In TS growth rings are indistinct ("IAWA 41"). The tracheids are more or less circular to hexagonal and intra-cellular spaces are present ("IAWA 53"; Pl. 1: 1, 2). They range in size approximately from $38-(67)-87 \mu m$ (vertical) by from $28-(59)-82 \mu m$ (horizontal). Tracheid walls are thin, $5-(6)-8 \mu m$ thick. No axial parenchyma and resin canals are observed. However, as the fossil wood material is poorly preserved it is difficult to unequivocally judge whether axial parenchyma is truly present or absent.

Systematic affinities. Araucarian pitting on the radial wall of tracheids (*i.e.* with more than 90% of the pits contiguous, mostly deformed at contact, while biseriate or pluriseriate always clearly alternate, rarely subopposite; rare isolated pits are possible, especially in narrowest tracheids; Sanio rims absent) with araucarian cross-field pits, which is characteristic of specimen BSIP 16274, is also found in the specimens of *Prototaxoxylon* Kräusel and Dolianiti (1958), and *Simplicioxylon* Andreanszky (1952). However, *Prototaxoxylon* is characterized by presence of spiral thickenings which are absent in the present specimen, therefore this material cannot be assigned to this xylotype. In *Simplicioxylon* the end wall of ray cells is at least locally strongly oblique, this is not the characteristic feature of specimen BSIP 16274.

Alternate and subopposite radial intertracheary pitting and cupressoid crossfield pitting is also characteristic of araucariaceous fossil wood and the wood of *Brachyoxylon* Hollick and Jeffrey (1909). However, *Brachyoxylon* includes woods with mixed radial pitting such that this fossil bears greater similarity to araucariaceous fossil woods than to those assigned to *Brachyoxylon*. Therefore this specimen has been assigned to the xylotype *Agathoxylon* erected for woods with araucarian radial wall pitting and araucarioid cross-field pits (Philippe, Bamford, 2008). No attempt has been made to place this specimen within an existing species since there are no other woods of this type yet reported from India and elsewhere. The fossil-genera for araucariaceous fossil wood are in need of revision (Bamford, Philippe, 2001).

Comparison. Agathoxylon kotaense n. sp. described in the present study closely resembles the wood of members of the modern Araucariaceae, in particular the genus Araucaria which grows across southern South America and northern Australasia (Greguss, 1955, 1972; Enright *et al.*, 1995). Agathoxylon is found in Mesozoic rocks of high southern latitudes, being described from both Gondwanan and non Gondwanan countries (Philippe, 2011). The new species described in the present study is compared with the closely related Mesozoic species of Agathoxylon known to date, from various parts of the globe. But all the species known previously differ in one or other aspects (Tab. 3).

The new specimen is very similar to Agathoxylon togeumense described by Oh et al. (2011) from the Early Cretaceous of Korea, differing primarily in the absence of tangential wall pits and presence of tetra-seriate radial wall pits. It also corresponds closely to a specimen of A. byeongpungense described from the Early Cretaceous of Korea by Oh et al. (2011), differing only in the less abundance of triseriate tracheid pitting in A. byeongpungense. Another close match is with the specimen of Agathoxylon agathiodes (Krausel & Jain) Bose & Maheshwari sensu Chinnappa and

Comparative table of Agathoxylon species reported from India and other parts of the globe

Table 3

Age and Taxa name	Country	Growth rings	Axial Parenchyma	Xylem rays	Radial wall pits	Tangential wall pits	Crossfield Pits
			,	TRIASSIC	ſ		
<i>Agathoxylon dallonii</i> (Boureau) Crisafulli & Herbst	Argentina	present	absent	1 seriate, 2–12 (5) cells	1–2 seriate, alternate contiguous	absent	1-2-[3]
<i>A. africanum</i> (Bamford) Kurzawe & Merlotti	Argentina	distinct	absent	1-[2] seriate, 2-15 cells	1–2 seriate, alternate contiguous	present	2–6
<i>Agathoxylon</i> sp. α (Sahni) Bose & Maheshwari	India	indistinct		1 seriate, 1–20 cells	1-2 seriate, alternate		2–5 or more
<i>Agathoxylon</i> sp. β (Sahni) Bose & Maheshwari	India	distinct		1 seriate, 1–15 cells	2-3 seriate, alternate		
			J	URASSIC			
A. pranhitensis Rajanikanth & Suhk-Dev	India	present		1-[2] seriate, 1-52 cells	1–3 seriate, alternate– sub–opposite		3–6
<i>A. matildense</i> Zamunar & Falaschi	Argentina	distinct	absent	1 seriate, 1–4 (2–3) cells	1 seriate, alternate contiguous	absent	4–5
<i>A. liguaensis</i> Torres & Philippe	Chile	distinct	absent	1 seriate, 1–56 (30) cells	1-2 seriate, alternate	present	4–5
A. arayaii Torres et al.	Antarctica	distinct		1 seriate, 1–25 (8–10) cells	1-2-[3] seriate, alternate	present	2–6
<i>A. saravanensis</i> (Serra) Philippe <i>et al.</i>	Vietnam	indistinct	absent	1 seriate, 1–23 (3–11) cells	1 seriate, opposite	absent	2-12 (4-8)
A. kotaense n. sp.	India	indistinct	absent	1 seriate, 2-20 (4-8) cells	1-[2] seriate, sub-opposite		12–16
<i>Agathoxylon</i> sp. Rajanikanth & Sukh-Dev	India	indistinct		1-[2] seriate, 1-18 cells	1-[2] seriate, alternate		2–5
<i>Agathoxylon</i> sp. Poole & Mirzaie	Iran	distinct	present	1-[2] seriate, 2-32 cells	1– (2) multi seriate, alternate to sub-opposite	present	up to 6
<i>Agathoxylon</i> sp. Ortega-Chávez <i>et al.</i>	Mexico	indistinct	absent	1 seriate, 2–21 (7) cells	[1]–2 seriate, alternate		1-2-[3]
			CR	ETACEOUS			
A. gondwanensis Kumarasamy	India	distinct		1 seriate, 1–39 (11) cells	1–[2] seriate, alternate contiguous	present	1-3, (1)
A. mosurense Jeyasingh & Kumarasamy	India	indistinct		1–[3] seriate, 1–27 (7) cells	1–2 seriate, alternate, contiguous	present	2–6
A. giftii Jeyasingh & Kumarasamy	India	distinct		1 seriate, 2–29 (10) cells	1–[2] seriate, alternate, contiguous	absent	1 or 2, [5–7]
<i>A. rajivii</i> Jeyasingh & Kumarasamy	India	distinct		1 seriate, 2–26 (12) cells	1–2 seriate, alternate, contiguous	absent	1–2, [3]
<i>A. rajmahalense</i> (Sahni) Bose & Maheshwari	India	indistinct		1 seriate, 1–20 (6) cells	1-3 seriate, alternate		
A. amraparense (Sah & Jain) Bose & Maheshwari	India	distinct		1 seriate, 1–15 cells	1–3 seriate, alternate- sub-opposite		2–4,
A. mandroense (Sah & Jain) Bose & Maheshwari	India	distinct		1 seriate, 1–15 cells	1-3 seriate, alternate		4–12
A. santalense (Sah & Jain) Bose & Maheshwari	India	distinct		1-[2] seriate, 1-10 cells	1-[2] seriate, alternate	•••••	26, (4)
<i>A. bindrabunense</i> (Sah & Jain) Bose & Maheshwari	India	indistinct		1-[2] seriate, 1-45 cells	[1]–(2)–3 seriate, alternate		4–12, (4–6)
A. agathiodes (Krausel & Jain) Bose & Maheshwari	India	indistinct		1 seriate, 2–20 cells	1–2 [3] seriate, alternate		28, (56)
A. jurassicum Bharadwaj	India	distinct		1-[2] seriate, 1-11 cells	1-2 seriate, alternate	present	4-8
A. wynnei Borkar & Bande	India	indistinct		Not av	ailable		
A. floresii Torres & Lemoigne	Antarctica	indistinct	present	1 seriate, 2-15 (4-7) cells	1 seriate, araucarioid	present	1–4
A. ohzuanum Nishida et al.	Chile	indistinct	present	1 seriate, 1-11 (1-7) cells	1-2 seriate, contiguous	present	1–4
A. pichasquense Torres & González	Chile	indistinct	absent	1 seriate, 1-11 (1-7) cells	1–2 seriate, contiguous,	present	5-10

Age and Taxa name	Country	Growth rings	Axial Parenchyma	Xylem rays	Radial wall pits	Tangential wall pits	Crossfield Pits
<i>A. parachoshiense</i> Nishida & Nishida	Chile	distinct	absent	1 seriate, 1–4 cells	1–2 seriate, araucarioid	absent	2-4
<i>A. novae-zeelandiae</i> Stopes	New Zeland		absent	1 seriate, 1–7 (3–4) cells	2 seriate, alternate	absent	5–6
<i>A. kaiparaense</i> (Edwards) Philippe <i>et al.</i>	New Zeland	distinct	absent	1-8 (2-3) seriate	1–2–[3] seriate, contiguous	absent	1-10
Dadoxylon (A.) kellerense Lucas & Lucey	Chile	distinct		1 seriate, 1–11 (4–5) cells	1-3 seriate, araucaroid	absent	1-4
A. resinosum Torres & Biro-Bagoczky	Chile	distinct		1 seriate, 1–40 cells	1-3 seriate, araucaroid	present	2–3
A. lemonii Tidweel & Thayn	US	distinct	present	1 seriate, 1-8 cells	1-2 seriate, alternate	present	1-4
A. pannonicum (Greguss) Barale et al.	Hungary				araucarioid		
<i>A. ultimus</i> Iamandei & Iamandei	Romania	indistinct	absent	1 seriate, 1–23 cells	1-2 seriate, contiguous	absent	1–7
<i>A. nepalense</i> (Barale <i>et al.</i>) Paudayal <i>et al.</i>	Nepal	indistinct	absent	1 seriate, 1–8 cells	1–[2] seriate, alternate, contiguous		1–5
A. togeumense Oh et al.	Korea	distinct	absent	1 seriate, 1-19 (2-5) cells	2-3-[4] seriate, alternate	present	4-22 (8-18)
A. kiiense (Ogura) Oh et al.	Korea	indistinct	absent	1 seriate, 1-19 (4) cells	1-2-[3] seriate, alternate	absent	4-10 (6-9)
<i>A. byeongpungense</i> (Kim <i>et al.</i>) Oh <i>et al.</i>	Korea	indistinct	absent	1 seriate, 2–20 (8) cells	1–2–[3] seriate, alternate contiguous	absent	7–15
D. (A.) franconicum Vogellehner		indistinct	absent	1 seriate, 1–40 (2–12) cells	1-4 seriate, alternate		3-10
D. (A.) japonicum Shimakura	Japan	indistinct	absent	1 seriate, 1–24 (3–10) cells	1-3 seriate, opposite	present	5–14
D. (A.) tankoense Stopes & Fujii)	Japan	indistinct	absent	1 seriate, 1–15 cells	2-4 seriate, alternate	present	48
A. mineense Ogura	Japan	distinct	absent	1–[2] seriate, 1–29 (3–14) cells	1–2 seriate		1–2
A. sidugawaense Shimakura	Japan	distinct	present	1 seriate, 1-14 (3-10) cells	1-2 seriate	present	1-3
A. chosiense Shimakura	Japan	indistinct	present	1 seriate, 1-3 cells	1-[2] seriate	present	1-4
A. biseriatum Nishida et al.	Japan	indistinct	absent	1–[2] seriate, 6–42 (2–10) cells	1–3 seriate		2–3
A. jeholense Ogura	Japan	indistinct	absent	1 seriate, 10-20 cells	1-[2] seriate		2
A. inuboense Nishida	Japan	indistinct	absent	1 seriate, 1-8 cells	1-2 seriate		2-4 (3)
A. pseudochoshiense Nishida	Japan	indistinct	absent	1 seriate, 1-8 (2-3) cells	1 seriate		2-5
<i>A. laosense</i> (Vosenin-Serra) Boura <i>et al.</i>	Vietnam	indistinct	absent	1–[2] seriate, 1–28 (2–15) cells	1-2 seriate, alternate	absent	3-8
Agathoxylon sp. A Ottone & Medina	Antarctica	distinct	absent	1-2 seriate, 1-25 (9) cells	1-2 seriate, araucaroid	absent	1-4
<i>Agathoxylon</i> sp. Falcon Lang & Cantrill	Antarctica	distinct	absent	1 seriate, 1–11 cells	1-2 seriate, alternate	absent	1-4
Agathoxylon sp. Torres	Antarctica	indistinct	absent	1 seriate, 2-10 cells	1-2 seriate, alternate	absent	2-3
Agathoxylon sp. Kustatscher et al.	Italy	indistinct	absent	1 seriate, 1–18 (1–7) cells	1-2 seriate, alternate	absent	2-5
Agathoxylon sp. Vera & Césari	Argentina	indistinct	present	1 seriate, 1-18 (6) cells	1-[2] seriate, alternate	absent	1-6 (3)
Agathoxylon sp. Pujana et al.	Argentina	distinct	absent	1 seriate, 1–5–[8] cells	1–[2] seriate, alternate, contiguous	absent	3–5
Agathoxylon sp. Philippe et al.	Argentina	distinct	absent	1 seriate, 1-15 cells	1-2 seriate	present	2–9
Agathoxylon sp. Nishida et al.	Chile	indistinct		1 seriate, 2–11 cells	1-2 seriate	present	2-4
Agathoxylon sp. Esteban et al.	Iberian Peninsula	indistinct		1-[2] seriate, 1-12 cells	1-2 seriate, contiguous	present	1–2
Agathoxylon sp. Barale et al.	Lebanon		present		1 seriate		8-10
			Ν	MESOZOIC			
Araucaria araucana (Mol) C. Koch	Argentina	distinct	absent	1 seriate, 5–10 cells	1–2 seriate, alternate- sub-opposite	absent	2–4

Table 3 cont.

Age and Taxa name	Country	Growth rings	Axial Parenchyma	Xylem rays	Radial wall pits	Tangential wall pits	Crossfield Pits
Araucaria angustifolia (Bertol) Kuntze	Argentina	distinct	rare	1 seriate, 1–19 cells	2-[3] seriate, alternate	absent	1–12 (2–5)
A. colaniae Serra	Vietnam	indistinct	absent	1–[2] seriate, 1–13 (3–7) cells	1-2 seriate, opposite	absent	2-8 (4-6)
<i>A. trungphanense</i> (Vosenin- Serra1981) Boura <i>et al.</i>	Vietnam	absent	absent	1-[2] seriate, 1-39	1, rarely 2–3 seriate opposite	absent	1–7
A. huzinamiense Ogura	Japan	indistinct	absent	1-[2] seriate, 4-13 cells	2–3 seriate		1
D. (A.) orbiculatum Vogellehner	Ethiopia	indistinct	absent	1 seriate, 1–27 (7–9) cells	1-4 seriate, alternate		2–5
A. jimoense Zhang & Wang	China	distinct	absent	1 seriate, 2-25 (9) cells	1-[2] seriate, alternate	absent	3-18
D. (A.) biradiatum Vogellehner	Ethiopia			1 seriate, 1–53 (12–16) cells	1-4 seriate, alternate		1–3
<i>D.</i> (<i>A.</i>) <i>mugherensis</i> Lemoigne & Beauchamp	Ethiopia	distinct		1-3 seriate, 1-10 cells	1-[2] seriate, opposite		6–16

Table 3 cont.

Rajanikanth (2018) from the Early Cretaceous sediments of the Rajmahal Formation which differ primarily in the presence of an axial parenchyma and a lesser number of crossfield pits. The species newly described here also shows some similarities with *A. rajmahalense* (Sahni) Bose & Maheshwari *sensu* Chinnappa and Rajanikanth (2018) from the Early Cretaceous sediments of Rajmahal Formation differing only in the greater abundance of triseriate tracheid pitting in *A. rajmahalense*.

FLORAL COMPOSITION AND DIVERSITY

The Kota flora is preserved as woods, leaves and as spores- and pollen (Rao, Shah, 1963; Mahabale, 1967; Shah *et al.*, 1973; Biradar, Mahabale, 1978; Prabhakar, 1989; Sukh Dev, Rajanikanth, 1988; Rajanikanth, Sukh Dev, 1989;

Vijaya, Prasad, 2001; Chinnappa, Rajanikanth, 2016). The leaves are comparatively less abundant. An analysis of the whole available data such as spore-and pollen, leaves and wood shows that the flora is composed of Pteridophytes and Gymnosperms (Tabs 4, 5). It resembles the flora from the Early Cretaceous Rajmahal and Gangapur formations in its composition. The leaf fossils reflect the preponderance of gymnosperms (44%) over pteridophytes (23%) (Fig. 2). The pteridophytes include Cladophlebis Brongniart, Coniopteris Brongniart, Equisetum Linnaeus, Hausmannia Dunker and Sphenopteris Sternberg (Rao, Shah, 1963; Shah et al., 1973; Rajanikanth, Sukh Dev, 1989). The members of the gymnosperms are represented by bennettitaleans such as Podozamites (Brongniart) Braun, Pterophvllum Brongniart and Ptilophyllum Morris, the ginkgoleans include Ginkgo Linnaeus and the coniferaleans are constituted of Araucarites Presl, Brachyphyllum (Lindley & Hutton) Brongniart, Ela-

Table 4

		~
Pteridophytes	Ginkgoales	Wood fossils (Coniferales)
Cladophlebis denticulata (Brongniart)	Gingoites lobata (Feistmantel) Seward	Agathoxylon kotaense Chinnappa & Rajanikanth
Fontaine emend. Harris C. indica (Oldham & Morris) Sahni & Rao C. reversa Feistmantel Cladophlebis sp. Coniopteris hymenophylloides (Brongniart) Seward Coniopteris sp. Equisetum rajmahalensis (Oldham & Morris) Schimper	Coniferales Araucarites cuchensis Feistmantel Araucarites sp. Brachyphyllum sp. Elatocladus conferta (Oldham & Morris) Halle F. jabalnurensis (Feistmantel) Seward	A. pranhitaensis (Rajanikanth & Sukh-Dev) Chinnappa & Rajanikanth A. santalense (Sah & Jain) Bose & Maheshwari sensu Chinnappa & Rajanikanth Agathoxylon sp. Cupressinoxylon kotaense Rajanikanth & Sukh-Dev Ginkgoxylon dixii Biradhar & Mahabale P. chandrapurense Rajanikanth & Sukh-Dev P. krauselii Rajanikanth & Sukh-Dev P. rajmahalense (Jain) Bose & Maheshwari Podocarpoxylon sp. Prototaxoxylon liassicum Muralidhar Rao Taxaceoxylon sp.
Hausmannia cf. buchii Andreae Sphenopteris sp. Bennettitales	<i>E. plana</i> (Feistmantel) Seward <i>E. plana</i> (Feistmantel) Seward <i>Elatocladus</i> sp. <i>Pagiophyllum peregrinum</i> (Lindley & Hotton) Sahni <i>Pagiophyllum</i> sp. <i>Pagiophyllum</i> sp. cf. <i>peregrinum</i> (Lindley & Hotton) Sahni	
Podozamites sp. P. fissum (Morris) Bose & Banerji Ptilophyllum acutifolium (Morris) Bose & Kasat P. cutchense (Morris) Bose & Kasat Ptilophyllum sp.		

List of the macro-floral elements known from the Kota Formation

Table 5

Bryophytes Aequitriradites sp. Cooksonites rajmahalensis Tripathi et al. C. variabillis Pocock Coptospora kutchensis Venkatachala C. microgranulosa Venkatachala & Sharma C. verrucosa Tripathi et al. Foraminisporis tribulosus Playford & Dettmann Triporoletes simplex (Cookson & Dettmann) Playford Pteridophytes Baculatisporites comaumensis (Cookson) Potonie Biformaesporites baculosus Singh & Kumar Ceratosporites equalis Cookson & Dettmann cf. Appendicisporites sp. cf. Crybelosporites stylosus cf. Dictyotosporites linearis (Cookson & Dettmann cf. Kraeuselisporites linearis (Cookson & Dettmann) Dettmann Cicatricosisporites hughesii Dettmann C. ludbrookii Dettmann C. clavus (Balme) Dettmann Concavissimisporites kutchensis Venkatachala C. penolaensis Dettmann C. subverrucosus Venkatachala	Crybelosporites punctatus Dettmann Densoisporites mesozoicus Singh et al. D. velatus (Weyland & Kreiger) Krasnova D. harrisii Couper Duplicisporites problematicus (Couper) Playford & Dettmann Foveosporites canalis Balme Impardecispora apiverrucata (Couper) Venkatachala et al. I. indica Venkatachala Ischyosporites crateris Balme I. marburgensis de Jersey Klukisporites venkatachalae Tripathi et al. Leptolepidites major Couper L. verrucatus Couper Lycopodiacidites asperatus Dettmann L. dettmannae Burger Matonisporites phlebopteroides Couper Microfoveolatosporites atbertonensis Cookson Murospora florida (Balme) Pocock Osmundacidites singhii Ramanujam & Srisailam Regulatisporites purverulentus (Verbitskaya) Dettmann	Gymnosperms Araucariacites australis Cookson A. cooksonii Singh et al. A. ghuneriensis Singh et al. Callialasporites dampieri (Balme) Sukh-Dev C. segmentatus (Balme) Sukh-Dev C. triletus Singh et al. C. trillobatus (Balme) Sukh-Dev C. turbatus (Balme) Sukh-Dev C. turbatus (Balme) Schulz Classopollis classoides Pocock & Jansonius Microcachryidites antarcticus Cookson M. mesozoica Pocock Podocarpidites ornatus Pocock P. tripakshii Rao
C. penotaensis Dettmann C. subverrucosus Venkatachala Contignisporites cooksoniae (Balme) Dettmann C. multimuratus Dettmann	Trilobosporites purverulentus (Verbitskaya) Dettmann	

List of the micro-floral elements known from the Kota Formation

tocladus Halle and *Pagiophyllum* Heer (Rao, Shah, 1963; Shah *et al.*, 1973; Rajanikanth, Sukh Dev, 1989) (Tab. 4).

Contrary to the macro-flora, the micro-flora exhibits the predominance of pteridophytes over the gymnosperms in

terms of taxonomic diversity (Fig. 3). Nevertheless, in terms of abundance, the micro-flora is dominated by the *Arauca-riacites* and *Callialasporites* of Araucariaceae and Podocar-paceae respectively (Prabhakar, 1989; Vijaya, Prasad, 2001). These results also suggest a gymnosperm dominated flora. The peculiarity of the micro-flora is the occurrence of spores belonging to bryophytes such as *Aequitriradites*, *Cookso-nites*, *Foraminisporis* and *Triporoletes* which have not been reported in the macro-floral record (Tab. 5).

The large sized fossil trunks of conifer affinity suggest that the flora is composed of woody vegetation. The fossil woods include the members of Araucariaceae (*Araucarioxylon*), Podocarpaceae (*Circoporoxylon* and *Podocarpoxylon*), Ginkgoaceae (*Ginkgoxylon*), Cuppressaceae (*Cupressinoxylon*) and Taxaceae (*Taxaceoxylon*) (Mahabale, 1967; Biradar, Mahabale, 1978; Rajanikanth, Sukh Dev, 1989; Chinnappa, Rajanikanth, 2016) (Tab. 4). Among these groups, the Araucariaceae and the Podocarpaceae are more abundant and taxonomically diversified and our results are in congruence with the reported leaf fossils and with the pollen and spores.

PALAEOECOLOGY

The fossil wood described here is characterised by the absence of distinct growth rings (D or E of Brison *et al.*, 2001), which is feature of trees growing in non-seasonal

Fig. 3. Micro-floral diversity pattern of various taxonomic groups in the Kota-flora

conditions (Fritts, 1976; Creber, Chaloner, 1985; Francis, Poole, 2002; Yang et al., 2013). However, it is important to note that in spite of the wide latitudinal distribution of the genus Agathoxylon, this taxon never displays rings of the (A, B, C of Brison et al., 2001) super-type, even when other woods from the same locality do (Brison et al., 2001). Similar trends can also be evidenced in the living Araucariaceae with Agathoxylon (Araucarioxylon)-type wood. This wood type also never displays the A, B, or C types (Seitz, Kanninen, 1989), even when growing in clearly seasonal climates (Creber, Chaloner, 1985). The other fossil woods reported from the Kota Formation show growth rings (Chinnappa, Rajanikanth, 2018). However, these growth rings differ from the rings of temperate woods such as Pinus sylvestris; they have much more subtle, discontinuous ring boundaries defined only by very few (3-5) late wood cells, and possess ring increments of extremely narrow and irregular width (type D of Brison et al., 2001).

When considered as a whole the woods of the Kota Formation with their low percentage of latewood without thickening of the tracheidal walls, and the gradual transition of early-latewood suggest accentuated growing periods (Francis, Poole, 2002; Pires *et al.*, 2011). These woods with interrupted growth rings indicate fluctuations in growing conditions over several growth periods. The false growth rings, which are common in most specimens, could reflect the palaeoclimatic and palaeoecological constrains (Pires et al., 2011). Although the false rings could be equally formed by the attack of bugs or floods, the former possibility can be suppressed based on the patterns of ring structure and the sedimentological factors. Therefore, severe droughts could be the controlling factor. Other plant fossils such as the abundant conifer leaves and pollen also present similar climatic inferences (Chinnappa, Rajanikanth, 2018). The resource constraints and the microenvironmental factors influenced the genesis of erratic growth rings as evidenced by the occurence of growth interruptions (Rajanikanth, Tewari, 2004; Chinnappa, Rajanikanth, 2016). The growth ring parameters suggest that the growth conditions were seasonal, but mostly stressed, and in some periods they induced an erratic full stoppage (Francis, Poole, 2002). These growth rings show closest similarity to the growth rings of modern tropical to subtropical conifers growing in the southern hemisphere.

The leaf fossil assemblage is characterized by the presence of conifers such as Araucarites, Brachyphyllum, Pagiophyllum and Elatocladus. These taxa with thick and leathery leaves also indicate that the plants were growing in subtropical environments with seasonal drought (Rajanikanth, Sukh-Dev, 1989). The palaeogeographic reconstruction of the Indian subcontinent during these time intervals is within the southern Subtropical Arid Belt (30–32°S), while the climatic conditions were very warm and dry (Chatterjee et al., 2013). Wood from warm subtropical climates usually shows weakly defined growth rings and growth interruptions, that cannot be traced, and the occurence of cupressoid conifers indicates a seasonally dry ecotone (Peralta-Medina, Falcon-Lang, 2012). These results are concurrent with the broad subtropical belt that existed in the Jurassic-Cretaceous interval (Chatterjee et al., 2013).

Acknowledgements. This work is undertaken as part of DST-NPDF project-2016/001442. One of the authors, Chinnappa Chopparapu thanks Department of Science and Technology for the financial support. The authors are thankful to R.C. Mehrotra, Director in charge of the Birbal Sahni Institute of Palaeosciences, Lucknow, India, for the encouragement and provision of infrastructural facilities. M. Philippe, Claude Bernard University Lyon, France, and Changhwan Oh, Chonbuk National University are greatly acknowledged for their constant support and encouragement. We are indeed greatly thankful to Mihai Emilian Popa, University of Bucharest, Romania and an anonymous reviewer for their constructive suggestions.

REFERENCES

- ANDREÁNSZKY G., 1952 Der versteinerte Wald von Mikófalva und einige andere verkieselte Baumstämme aus Ungarn. Annals of Biology, University of Hungariae, 1: 15–24.
- BAMFORD M., PHILIPPE M., 2001 Gondwanan Jurassic–Early Cretaceous homoxylous woods: a nomenclatural revision of the genera with taxonomical notes. *Review of Palaeobotany* and Palynology, **113**: 287–297.
- BARBACKA M., BODOR E., 2008 Systematic and palaeoenvironmental investigations of fossil ferns *Cladophlebis* and *Todites* from the Liassic of Hungary. *Acta Palaeobotanica*, 48: 133–149.
- BHANDHYOPADHYAY S., RUDR D.K., 1985 Upper Gondwana stratigraphy, north of the Pranhita-Godavari confluence, southern India. *Journal of the Geological Society of India*, 26: 261–266.
- BHATTACHARYA A., RAY S., DATTA P.M., MAULICK P., 1994
 Fossil Charaphyta from the Kota Formation of the Pranhita-Godavari valley, Andhra Pradesh, India. Proceedings of the 9th International Gondwana Symposium, Hyderabad, India, 2: 471–475.
- BIRADAR N.V., MAHABALE T.S., 1978 Occurrence of *Ginkgo* like wood in east coast Gondwanas of India. *Recent Research in Geology*, 5: 146–153.
- BONDE S.D., 2010 A new genus of Podocarpaceous wood from the Lathi Formation (Early Jurassic) of Rajasthan, India. *Geophytology*, **38**: 19–24.
- BRISON A.L., PHILIPPE M., THEVENARD F., 2001 Are Mesozoic wood growthrings climate induced? *Palaeobiology*, 27: 531–538.
- BOSE M.N., TAYLOR E.L., TAYLOR T.N., 1990 Gondwana Floras of India and Antarctica – A Survey and Appraisal. *In:* Antarctic Palaeobiology: its role in the reconstruction of Gondwana (Eds T.N. Taylor, E.L. Taylor), Springer-Verlag, New York: 18–148.
- CHATTERJEE S., GOSWAMI A., SCOTESE C.R., 2013 The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. *Gondwana Research*, 23: 238–267.
- CHINNAPPA Ch., RAJANIKANTH A., RAO Y.V., 2014 Floral diversity and implications in palaeoenvironment of Vemavaram Formation (Krishna Depression), Krishna-Godavari Basin, Andhra Pradesh, India. *Palaeobotanist*, **63**: 63–78.
- CHINNAPPA Ch., RAJANIKANT A., RAO Y.V., 2015 Early Cretaceous plant diversity and ecology in the Krishna-Godavari Basin, East Coast of India. *Journal of the Palaeontological Society of India*, **60**: 73–96.
- CHINNAPPA Ch., RAJANIKANTH A., 2016 A new species of *Circoporoxylon* from Kota Formation (Jurassic), Pranhita-Godavari Basin, India and palaeobiogeography of the genus. *Ameghiniana*, 53: 675–684.

- CHINNAPPA Ch., RAJANIKANTH A., 2017 Early Cretaceous flora from the Pranhita-Godavari Basin (east coast of India): taxonomic, taphonomic and palaeoecological considerations. *Acta Palaeobotanica*, 57: 13–32.
- CHINNAPPA Ch., RAJANIKANTH A., 2018 Mesozoic woods from India: Nomenclature review and palaeoclimatic implications. *Palaeoworld*, 27: 211–225.
- CREBER G.T., CHALONER W.G., 1985 Tree growth in the Mesozoic and Early Tertiary and the reconstruction of palaeoclimate. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **52**: 35–60.
- DATTA P.M., 1981 The first Jurassic mammal from India. Zoological Journal of the Linnean Society, **73**: 307–312.
- DATTA P.M., DAS D.P., 2001 Indozostrodon simpsoni, gen. et sp. nov., an Early Jurassic megazostrodontid mammal from India. Journal of Vertebrate Paleontology, 21: 528–534.
- DATTA P.M., MANNA P., GHOSH S.C., DAS D.P., 2000 The first Jurassic turtle from India. *Palaeontology*, **43**: 99–109.
- EGERTON P.M.G., 1851 Description of specimens fossil fishes from the Deccan. *Quaternary Journal of Geological Society of London*, 7: 273.
- ENRIGHT N.J., HILL R.S., VEBLEN T.T., 1995 The Southern Conifers: an introduction. *In*: Ecology of the Southern Conifers (Eds N.J. Enright, R.S. Hill). Melbourne University Press, Melbourne: 1–9.
- EVANS S.E., PRASAD G.V.R., MANHAS B.K., 2001 Rhynchocephalians (Diapsida: Lepidosauria) from the Jurassic Kota Formation of India. *Zoological Journal of the Linnean Society*, 133: 309–334.
- EVANS S.E., PRASAD G.V.R., MANHAS B.K., 2002 Fossil lizards from the Jurassic Kota Formation of India. *Journal of Vertebrate Paleontology*, 22: 299–312.
- FALCON-LANG H.J., CANTRILL D.J., 2000 Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. 1: Wood taxonomy: a quantitative approach. *Review of Palaeobotany* and Palynology, **111**: 1–17.
- FALCON-LANG H.J., CANTRILL D.J., 2001 Gymnosperm woods from the Cretaceous (mid-Aptian) Cerro Negro Formation, Byers Peninsula, Livingston Island, Antarctica: the arborescent vegetation of a volcanic arc. Cretaceous Research, 22: 277–293.
- FEIST M., BHATIA S.B., YADAGIRI P., 1991 On the oldest representative of the family Characeae and its relationship with the Porocharaceae. *Bulletin de la Société Botanique de France*, 138: 25–32.
- FRANCIS J.E., POOLE I., 2002 Cretaceous and early Tertiary climates of Antarctica: evidence from fossil wood. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 182: 47–64.
- FRITTS H.C., 1976 Tree Rings and Climate. Academic Press, London.
- GOVINDAN A., 1975 Jurassic fresh water ostracods from the Kota limestones of India. *Palaeontology*, 18: 207–216.
- GREGUSS P., 1955 Identification of living gymnosperms on the basis of xylotomy.

- GREGUSS P., 1972 Xylotomy of the living conifers. Budapest: Akad. Kiadó.
- HAO Y., SU D., LI Y.,1983 Late Mesozoic nonmarine ostracods in China. *In*: Applications of Ostracoda (Ed. R.F. Maddocks).
 Proceedings of the Eighth International Symposium on Ostracoda, University of Houston, Houston, Texas: 372–380.
- HARRIS T.M., 1961 The Yorkshire Jurassic Flora. Thallophyta-Pteridophyta. British Museum of Natural History, London.
- HENKEL J.B., HOCHSTETTER W., 1865 Synopsis der Nadelhölzer, deren Charakteristischen merkmale nebst andeutungen über ihre Cultur und Ausdauer in Deutschlands Klima. Verlag der J.G. Cottaschen Buchhandlung, Stuttgart.
- HOLLICK A., JEFFREY E.C., 1909 Studies of coniferous Cretaceous remains from Kreischerville (New York). *Memoirs of New York Botanical Garden*, 3: 1–137.
- IAWA COMMITTEE., 2004 List of microscopic features for softwood identification. *IAWA Journal*, 25: 1–70.
- JAIN S.L., 1973 New specimens Lower Jurassic holostean fishes from India. *Palaeontology*, 16: 149–177.
- JAIN S.L., 1974a Indocoelacanthus robustus n. gen., n. sp. (Coelacanthidae, Lower Jurassic), the first Coelacanth from India. Palaeontology, 48: 49–62.
- JAIN S.L., 1974b Jurassic pterosaur from India. Journal of the Geological Society of India, 15: 330–335.
- JAIN S.L., 1983 A review of the genus *Lepidotes* (Actinopterygii: Semionotiformes) with special reference to the species from Kota Formation (Lower Jurassic), India. *Journal of the Paleontological Society of India*, 28: 7–42.
- JAIN S.L., KUTTY T.S., ROY-CHOWDHURY T., CHATTERJEE S., 1975 – The sauropod dinosaur from the Lower Jurassic Kota Formation of India. *Proceedings of the Royal Society of London*, 18: 221–228.
- KIETZKE K.K., LUCAS S.G., 1995 Ostracoda and Gastropoda from the Kayenta Formation (Lower Jurassic) of Arizona, USA. *Journal of the Arizona-Nevada Academy of Science*, 28: 23–32.
- KING W., 1881 The geology of the Pranhita-Godavari Valley. Memoirs of the Geological Survey of India, 18: 1–151.
- KRÄUSEL R., DOLIANITI E., 1958 Gymnospermhölzer aus dem Paläozoikum Brasiliens. *Palaeontographica Abteilung B*, 104: 115–137.
- KRISHNAN M.S., 1968 Geology of India and Burma. Higginbothams, Madras.
- KRUSAT G., 1980 Contribuicio para o conhecimento da fauna do kimeridgiano da Mina de lignite Guimarota (Leiria, Portugal). IV parte Haldanodon exspectatus Kühne & Krusat, 1972. *Memorias dos Servicos Geologicos de Portugal No.*, 27: 1–79.
- KUTTY T.S., 1969 Some contribution to the stratigraphy of the Upper Gondwana formations of the Pranhita-Godavari Valley, central India. *Journal of the Geological Society of India*, 10: 33–48.

- KUTTY T.S., JAIN S.L., ROY CHOWDHURY T., 1987 Gondwana sequence of the northern Pranhita-Godavri Valley: its stratigraphy and Vertebrate faunas. *Palaeobotanist*, 36: 214– 229.
- LAKSHMINARAYANA G., 1994 Stratigraphy and structural framework of the Gondwana sediments in the Pranhita-Godavari Valley, Andhra Pradesh. *Gondwana Nine*, 1: 311–330.
- LAKSHMINARAYANA G., 2002 Evolution in Basin fill style during the Mesozoic Gondwana Continental breakup in the Godavari Triple Junction, SE India. *Gondwana Research*, 5: 227–244.
- LIU J., 1982 Jurassic Charophytes from Sichuan province. Bulletin Institute of Geology Chinese Academy Geology Science, 5: 97–110.
- MAHABALE S., 1967 Mesozoic floras of India: the Kota-Maleri stage. *Palaeobotanist*, 15: 308–312.
- MEIZHEN C., 1984 Some early Mesozoic ostracods from South China. Memoires Nanjing Institute of Geology and Paleontology, Academie Sinica, 9: 33–57.
- MISRA R.S., SATSANGI P.P., 1979 Ostracods from Kota Formation. Proceedings of the Colloquium on Micropalaeontology and Stratigraphy. *Geological Survey of India, Miscellaneous Publication*, 45: 73–80.
- MURALIDHARA RAO G., 1991 On a silicified wood from the Kota Formation (Liassic) of the Pranhita-Godavari Basin. *Swamy Journal of Botany*, **8**: 107–112.
- OH C., KIM K., PAIK I.S., LIM J.D., 2011 Cretaceous conifer woods of Korea: Occurrences and palaeobiological implications. *Review of Palaeobotany and Palynology*, 164: 67–83.
- OWEN R., 1852 Note on the crocodilian remains accompanying Dr. T.L. Bell's paper on Kotah. *Proceedings of the Royal Soci*ety of London, 7: 233.
- PARMAR V., PRASAD G.V., KUMAR D., 2013 The first multituberculate mammal from India. *Naturwissenschaften*, 100: 515–523.
- PECK R.E., 1957 North American Mesozoic Charophyta. U.S. Geol. Surv. Prof. Paper, 294A.
- PERALTA-MEDINA E., FALCON-LANG H.J., 2012 Forest composition and productivity inferred from a global fossil wood database. *Geology*, 40: 219–222.
- PHILIPPE M., 2011 How many species of *Araucarioxylon?* Comptes Rendus Palevol, **10**: 201–208.
- PHILIPPE M., BAMFORD M.K., 2008 A key to morphogenera used for Mesozoic conifer like woods. *Review of Palaeobotany* and Palynology, 148: 184–207.
- PIRES E.F., GUERRA-SOMMER M., dos SANTOS SCHERER C.M., dos SANTOS A.R., CARDOSO E., 2011 – Early Cretaceous coniferous woods from a paleoerg (Paraná Basin, Brazil). Journal of South American Earth Sciences, 32: 96–109.
- PRABHAKAR M., 1989 Palynological evidences and its significance for the Kota Formation in the Pranhita-Godavari basin.

Proceedings of the 12th Indian Colloquium on Micropalaeontology and Stratigraphy: 59–65.

- PRASAD G.V.R., MANHAS B.K., 1997 A new symmetrodont mammalfrom the Lower Jurassic Kota Formation, Pranhita-Godavari Valley, India. *Geobios*, **30**: 563–572.
- PRASAD G.V.R., MANHAS B.K., 2001 First docodont mammals of Laurasian affinity from India. *Current Science*, 81: 1235–1238.
- PRASAD G.V.R., MANHAS B.K., 2002 Triconodont mammals from the Jurassic Kota Formation of India. *Geodiversitas*, 24: 445–464.
- PRASAD G.V.R., MANHAS B.K., 2007 A new docodont mammal from the Jurassic Kota Formation of India. *Palaeontologia Electronica*, **10**: 1–11.
- PRASAD G.V.R., MANHAS B.K., ARRATIA G., 2004 Elasmobranch and actinopterygian remains from the Jurassic and Cretaceous of India. *In*: Mesozoic Fishes 3-Systematics, Paleoenvironments and Biodiversity (Eds G. Arratia and A. Tintori). Verlag, Dr. Friedrich Pfeil, München: 625–638.
- RAI J., PRASAD M., PRAKASH N., SINGH A., GARG S., GUP-TA M., PANDEY D.K., 2016 – Gymnosperm fossil woods from Gangta Bet, Eastern Kachchh, Western India. *Journal of the Paleontological Society of India*, 61: 111–122.
- RAIVARMAN V., RAO M.R., PAL D., 1985 Stratigraphy and structure of the Pranhita-Godavari Graben. *Petroleum Asia Journal*, 8: 174–190.
- RAJANIKANTH A., CHINNAPPA CH., 2016 Early Cretaceous flora of India. A review. *Palaeobotanist*, 65: 209–245.
- RAJANIKANTH A., SUKH-DEV., 1989 The Kota Formation: fossil flora and stratigraphy. *Geophytology*, 19: 52–64.
- RAJANIKANTH A., TEWARI R., 2004 Environmental implications of Gondwana wood studies in India. *Palaeobotanist*, 53: 69–81.
- RAJANIKANTH A., VENKATACHALA B.S., KUMAR A., 2000 – Geological age of the *Ptilophyllum* Flora. A critical Reassessment. *Memoirs of the Geological Society of India*, **46**: 245– 256.
- RAMANUJAM C.G.K., RAJESHWAR RAO P.V., 1979 Palynological approach to the study of some Upper Gondwana clays at Ralpet near Asifabad in Adilabad District of Andhra Pradesh. *Geological Survey of India, Miscellaneous Publication*, **50**: 45–60.
- RAO C.N., SHAH S.C., 1959 Fossil insects from the Gondwanas of India. *Indian Minerals*, 13: 3–5.
- RAO C.N., SHAH S.C., 1963 On the occurrence of pterosaur from the Kota-Maleri beds, Chanda district, Maharashtra. *Records of the Geological Survey of India*, **92**: 315–318.
- RÖSSLER R., PHILIPPE M., van KONIJNENBURG-van CIT-TERT J.H., MCLOUGHLIN S., SAKALA J., ZIJLSTRA G., 2004 – Which name(s) should be used for Araucaria-like fossil wood? Results of a poll. *Taxon*, 63: 177–184.

- RUDRA D.K., 1982 Upper Gondwana stratigraphy and sedimentation in the Pranhita-Godavari Valley, India. *Quaternary Jour*nal of the Geological, Mining and Metallurgical Society of India, 54: 56–79.
- SEITZ R.A., KANNINEN M., 1989 Tree ring analysis of Araucaria angustifolia in southern Brazil: preliminary results. International Association of Wood Anatomists Bulletin, 10: 170– 174.
- SENGUPTA S., 2003 Gondwana sedimentation in the Pranhita-Godavari Valley: a review. *Journal of the Asian Earth Science*, 21: 633–642.
- SHAH S.C., GOPAL S., GURURAJA M.N., 1973 Observations on the post Triassic Gondwana sequences of India. *Palaeobotanist*, 20: 221–237.
- SIGOGNEUA-RUSSEL D., 1995 Two possibly aquatic troconodont mammals from the Early Cretaceous of Morocco. Acta Palaeontologica Polonica, 40: 149–162.
- SUKH-DEV., RAJANIKANTH A., 1988 The Gangapur Formation: fossil flora and stratigraphy. *Geophytology*, 18: 1–27.
- TASCH P., SASTRY M.V.A., SHAH S.C., RAO B.R.J., RAO C.N., GHOSH S.C., 1973 – Estherids of the Indian Gondwana: Significance for continental drift. *In*: Gondwana Geology (Ed. K.S.W. Campbell). Australian National University Press: 445–452.
- VIJAYA., PRASAD G.V.R., 2001 Age of the Kota Formation, Pranhita Godavari Valley, India. A palynological approach. *Journal of the Palaeontological Society of India*, 46: 77–93.
- YADAGIRI P., 1984 New symmetrodonts from Kota Formation (Early Jurassic), India. Journal of the Geological Society of India, 25: 514–521.
- YADAGIRI P., 1985 An amphidontid symmetrodonts from the Early Jurassic Kota Formation, India. Zoological Journal of the Linnean Society, 85: 411–417.
- YADAGIRI P., 1986 Lower Jurassic lower vertebrates from Kota Formation, Pranhita-Godavari Valley, India. Journal of the Paleontological Society of India, 31: 89–96.
- YADAGIRI P., PRASAD K.N., 1977 On the discovery of new pholidophorus fishes from Kota Formation, Adilabad District, Andhra Pradesh. *Journal of the Geological Society of India*, 18: 436–444.
- YADAGIRI P., RAO B.R.J., 1987 Contribution to the stratigraphy and vertebrate fauna of Lower Jurassic Kota Formation, Pranhita-Godavari Valley, India. *Palaeobotanist*, 36: 230–244.
- YADAGIRI P., PRASAD K.N., SATSANGI P., 1979 The sauropod dinosaur from Kota Formation of Pranhita-Godavari Valley, India. *In*: 4th International Gondwana Symposium (Eds B. Laskar, C.S. Raja Rao). Hindustan publication corporation, New Delhi: 199–203.
- YANG X.J., WANG Y.D., ZHANG W., 2013 Occurrences of Early Cretaceous fossil woods in China: Implications for paleoclimates. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 385: 213–220.

PLATE 1

Agathoxylon kotaense n. sp., BSIP 16274

- Fig. 1, 2. Transverse section showing indistinct growth ring and tracheid cells
- Fig. 3. Tangential section showing uniseriate ray cells
- Fig. 4. Radial section showing uniseriate bordered pits
- Fig. 5. Radial section showing biseriate bordered pits arranged in sub-oppositely
- Fig. 6–8. Crossfield area with group of araucarioid pits

Scale bar 50 µm

Chopparapu CHINNAPPA et al. - Palaeofloras from the Kota Formation, India: palaeodiversity and ecological implications